Cracow University of Tech Institute of Thermal and P Engineering Division of Fluid Mecha	rocess	Name and surname:			Number of classes: 16
Subject of classes: Identi	ficatio	n of the fluid	flow rate		Accademic year:
Date of execution:	Date of eval	uation:	Mark:	Remarks:	

1. Measurements of air flow rate using Venturi tube

Volume flow rate can be calculated using following formula:

$$Q_z = \frac{C}{\sqrt{1 - \beta^4}} \cdot \varepsilon_1 \cdot \frac{\pi}{4} \cdot d^2 \cdot \sqrt{\frac{2 \cdot \Delta p_z}{\rho}} \tag{1}$$

where:

 β = d/D – Venturi tube modulus,

 p_1 – total static pressure of flow in front of Venturi tube; $p_1 = p_b + p_{w1}$,

p_b – barometric pressure [Pa],

 ρ - density of air – dependent on thermodynamic conditions of flow $\rho = \rho(p_1, T)$.

$$\varepsilon_1 = 1 - \left(0, 41 + 0, 35 \cdot \beta^4\right) \frac{\Delta p_z}{1, 4p_1} \tag{2}$$

Air density in flow conditions can be assign by application of the ideal gas equation of state – the Clapeyron equation:

$$\rho = \frac{p_1}{RT} \tag{3}$$

where:

R= 287 [J/kgK]- individual gas constant for air,

T – absolute temperature of air [K].

Flow correction factor $C = C(\beta, Re)$ can be assigned using Stolz formula:

$$C = 0,5959 + 0,0312 \cdot \beta^{2,1} - 0,184 \cdot \beta^{8} + 0,0029 \cdot \beta^{2,5} \left(\frac{10^{6}}{\text{Re}}\right)^{0,75} + 0,09 \cdot \frac{25,4mm}{D} \cdot \beta^{4} \cdot \left(1 - \beta^{4}\right)^{-1} - 0,0337 \cdot \frac{25,4mm}{D} \cdot \beta^{3}$$
(4)

Due to the fact that Reynolds number is unknown, coefficient C must be assigned using iteration method. In first iteration in this method value of C is calculated for some arbitrary chosen value of Reynolds number $Re = 50\,000$. For self-check – approximated value C in laboratory measurement condition is equal to C = 0,628. Reynolds number value in further iterations shall be assign using well known formula:

$$Re = \frac{4Q_z \rho}{\pi D\eta} \tag{5}$$

Dynamic viscosity of air η is a function of temperature and can be assign using Sutherland's viscosity law for the ideal gas:

$$\eta = \eta_0 \frac{273,15 + C_s}{T + C_s} \left(\frac{T}{273,15} \right)^{\frac{3}{2}} \tag{6}$$

where:

 η_0 – dynamic viscosity in temperature equal to 273 K (for air η_0 = 17,08·10⁻⁶ [Pa·s]) C_s – Sutherland constant (for air C_s = 112)

Table 1. Measurement results obtained using Venturi tube

p _b =	·		[Pa]	d = 3	5·mm	D = 4	6·mm	β=		
No.	Fan frequency	p _{w1} [mmH ₂ O]	Δp_z [mbar]	t [°C]	ρ [kg/m ³]	η [N·s/m ²]	\mathcal{E}_{l}	Re	С	Q_z [m ³ /s]
1	Hz									
2	Hz									
3	Hz									
4	Hz									
5	Hz									

2. Measurements of air flow rate using elbow flowmeter (centrifugal-head flowmeter)

Shift		Height		$ h - h_2 - h_1 c - h_2 - h_1 $		Measured	Real radius
a [mm]	h ₁ [mm]	h ₂ [mm]	h ₃ [mm]	[mm]	[mm]	radius R [mm]	R [mm]
20							93,5±3

The elbow bending radius R can be assign using equation (7):

$$R = \frac{\sqrt{(4 \cdot a^2 + c^2)(a^2 + b^2)(a^2 + c^2 - 2 \cdot c \cdot b + b^2)}}{2 \cdot a \cdot (c - 2 \cdot b)} - \frac{D_z}{2}$$
(7)

where: $D_z = 50 \text{ mm} - \text{outer pipe diameter}$.

Volumetric flow rate of air inside the pipeline can be assigned using formula (8):

$$Q_e = KA \sqrt{\frac{R}{D} \frac{\Delta p_e}{\rho}} \tag{8}$$

where:

$$K = 1 - \frac{6.5}{\sqrt{\text{Re}}}$$
 - flow correction factor (9)

$$A = \frac{\pi D^2}{4} \tag{10}$$

$$Re = \frac{4Q_e \rho}{\pi D \eta} \tag{11}$$

In first iteration value of K is calculated for some arbitrary chosen value of Reynolds number, e.g. $Re = 50\,000$. Then, Reynolds number value in further iterations shall be assign using formula (11).

Table 2. Measurement results obtained using elbow flowmeter

No.	Fan frequency	Δp_e [mbar]	Δp_e [Pa]	Re	K	$rac{Q_e}{[\mathrm{m}^3/\mathrm{s}]}$
1	Hz					
2	Hz					
3	Hz					
4	Hz					
5	Hz					

3. Measurements of air flow rate using impact tube (Prandtl tube)

Table 3. Local flow velocity measure using Prandtl impact tube

N.	Fan		$v_{ m av}$		
No.	frequency	$0.032 D = \dots [mm]$	$0,135 D = \dots [mm]$	$0,321 D = \dots [mm]$	[m/s]
1	Hz				
2	Hz				
3	Hz				
4	Hz				
5	Hz				

Average velocity of air for each measurment series are calculated using eq. (12):

$$v_{av} = \frac{1}{3} \sum_{i=1}^{3} v_i \tag{12}$$

Value of flow rate Q_p and Reynolds number Re are described by following formulas:

$$Q_P = v_{av} \frac{\pi D^2}{4} \tag{13}$$

$$Re = \frac{D \rho v_{av}}{\eta} \tag{14}$$

Table 4. Measurement results obtained using Prandtl impact tube

No.	Fan frequency	v _{av} [m/s]	Re	Q_P [m ³ /s]
1	Hz			
2	Hz			
3	Hz			
4	Hz			
5	Hz			

4. Comparison of flow rate measurement results

Assuming, that volumetric flow rate measurement performed by Venturi tube is a reference result, assign appropriate relative deviation for elbow flowmeter and Prandtl tube using eq. (15) and (16):

$$\delta Q_k = \frac{Q_z - Q_e}{Q_z} \cdot 100 \, \left[\%\right] \tag{15}$$

$$\delta Q_p = \frac{Q_z - Q_p}{Q_z} \cdot 100 \, [\%] \tag{16}$$

Table 5. Comparison study results

No.	Fan frequency	$\delta\!Q_e$ [%]	δQ_p [%]
1	Hz		
2	Hz		
3	Hz		
4	Hz		
5	Hz		